OPTICAL PROPERTIES OF GALLIUM PHOSPHIDE (GaP)
DOI:
https://doi.org/10.51406/jnset.v13i1.1475Keywords:
Complex Index of Refraction, Complex Dielectric Constant, Transmittance, Absorption Coefficient, Reflection Coefficient, Reflectance, Optical Conductivity, SemiconductorAbstract
Optical properties of Gallium Phosphide (GaP) have been investigated by means of Kramers Kronig method. Optical properties such as refractive index, extinction coefficient, dielectric constant, transmittance, absorption coefficient, reflectance, reflection coefficient and optical conductivity are presented in the energy range 1.03 «¤?? 6.01eV. The calculated optical properties of GaP indicate promising device applications such as the design of optoelectronic devices, electronic and photonic devices.
References
Akinlami J. O., Ashamu A. O. 2013. Optical Properties of GaAs, J. Semicond. 34
(3), 032002-1 «¤?? 032002-5
Bakr N. A., Funde A. M., Waman V. S., Kamble M. M., Hawaldar R. R., Amalnerkar D. P., Gosavi S. W., Jadkar S. R. 2011. Determination of the optical parameters of a-Si:H thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only, Pramana Journal of Physics, 76 (3), 527
Beck A. L., Collins C. J., Wang S., Yang B., Campbell J.C., Yulius A., Chen A. , Woodall J. M. 2002. In Lasers and Electro-Optics Society, LEOS 2002. The 15th Annual meeting of the IEEE., Vol. 2, 837
Dean P. J., Kaminsky G., Zetterstrom R. B. 1967. Intrinsic Optical Absorption of Gallium Phosphide between 2.33 and 3.12eV, J. Appl. Phys. 38, 3551
Dean P. J., Thomas D. G. 1966. Intrinsic Absorption-edge Spectrum of Gallium Phosphide, Phys. Rev. 150, 690
Epstein A. S., Grove W. O. 1965. Single crystal Gallium Phosphide Solar Cells, Advance Energy Conversion 5(2), 161
Fox M. 2001. Optical Properties of Solids, Oxford University Press, New York, USA, ISBN- 13:9780198506126, 305
Goswami A. 2005. Thin Film Fundamentals, New Age International, New Delhi, India.
Hatami F., Masselink W. T., Lordi V., Harris J. S. 2006. Green emission from InP-GaP squantum-dot light emitting diode, IEEE Photonics Technology Letters 18(7), 895
Hofler G. E., Carter-Coman C., Kramers M. R., Gardner N. F., Kish F. A., Tan T. S., Loh B., Posselt J., Collins D., Sasser G. 1998. Highflux, high-efficiency transparent-substrate AlGaInP/GaP light-emitting diodes, Electron Lett. 34, 1781
Kish F. A., Steranka F. M., Defevere D. C., Vanderwater D. A., Park K. G., Kuo C.
P., Osentowski T. D., Peanasky M. J., Yu J. G., Fletcher R. M., Steigerwald D. A., Grafford M. G., Robbins V. M. 1994. Very high-efficiency semiconductor wafer-bonded
transparent-substrate (AlxGa1-x)0.5In0.5P/GaP lightemitting diodes, Appl. Phys. Lett. 64, 2839
Liu Z. G., Bai Y. J., Cui D. L., Hao X. P., Wang L. M., Wang Q. L., Xu X. G. 2002. Increase of lattice constant in GaP nanocrystals, J. Cryst. Growth 242, 486
Matsumoto N., Kumabe K. 1979. Effect of hydrogen incorporation during deposition by sputtering for amorphous Gallium Phosphide films, Japanese Journal of Applied Physics 18(5), 1011
Nelson D. F., Turner E. H. 1968. Electro-optic and Piezoelectric Coefficients and Refractive index of Gallium Phosphide, J. Appl. Phys. 39, 3337
Panish H. B. and Casey H. C. 1969. Temperature Dependence of the Energy Gap in GaAs and GaP,J. Appl. Phys. 40 (1), 163
Pankove J. I. 1971. Optical Processes in Semiconductors, Prentice-Hall, New Jersey, 88
Schubert E. F. 2004. Refractive index and extinction coefficient of materials. http://homepages.rpi.edu/~schubert/Educational-resources/Materials-Refractive-index-and-extinction-coefficient.pdf
Sharma, P., Katyal S. C. 2007. Determination of optical parameters of a-(As2Se3)90Ge10 thin film. J. Phys D: Appl Phys 40. 2115
Sturge M. D. 1962. Optical absorption of gallium arsenide between 0.6 and 2.75eV. Phys Rev 127, 768
Swanepoel R.1983. Determination of the thickness and optical constants of amorphous silicon. J Phys E: Sci Instrum 16. 1214
Treideris M., Simkiene I., Kasalynas I., Selskis A., Babonas G. J. 2011. Infrared Refletance of GaP Nanorods, Lithuanian Journal of Physics. 51 (4), 341
Yu P. Y., Cardona M. 1996 Fundamentals of Semiconductors. Springer-Verlag, Berlin, Germany.
Zhang Q., Zhang Z., Zhou Z. 2008. Probe into the reflection from GaP nanoparticles via different solutions of radiative transfer equation, Appl. Phys. B 93, 589
Zhang Q, Wei W., Puan F. 2011, Ellipsometric analysis and optical absorption characterization of Gallium Phosphide nanoparticulate thin film, Chin. Phys. B 20 (4), 049802
(3), 032002-1 «¤?? 032002-5
Bakr N. A., Funde A. M., Waman V. S., Kamble M. M., Hawaldar R. R., Amalnerkar D. P., Gosavi S. W., Jadkar S. R. 2011. Determination of the optical parameters of a-Si:H thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only, Pramana Journal of Physics, 76 (3), 527
Beck A. L., Collins C. J., Wang S., Yang B., Campbell J.C., Yulius A., Chen A. , Woodall J. M. 2002. In Lasers and Electro-Optics Society, LEOS 2002. The 15th Annual meeting of the IEEE., Vol. 2, 837
Dean P. J., Kaminsky G., Zetterstrom R. B. 1967. Intrinsic Optical Absorption of Gallium Phosphide between 2.33 and 3.12eV, J. Appl. Phys. 38, 3551
Dean P. J., Thomas D. G. 1966. Intrinsic Absorption-edge Spectrum of Gallium Phosphide, Phys. Rev. 150, 690
Epstein A. S., Grove W. O. 1965. Single crystal Gallium Phosphide Solar Cells, Advance Energy Conversion 5(2), 161
Fox M. 2001. Optical Properties of Solids, Oxford University Press, New York, USA, ISBN- 13:9780198506126, 305
Goswami A. 2005. Thin Film Fundamentals, New Age International, New Delhi, India.
Hatami F., Masselink W. T., Lordi V., Harris J. S. 2006. Green emission from InP-GaP squantum-dot light emitting diode, IEEE Photonics Technology Letters 18(7), 895
Hofler G. E., Carter-Coman C., Kramers M. R., Gardner N. F., Kish F. A., Tan T. S., Loh B., Posselt J., Collins D., Sasser G. 1998. Highflux, high-efficiency transparent-substrate AlGaInP/GaP light-emitting diodes, Electron Lett. 34, 1781
Kish F. A., Steranka F. M., Defevere D. C., Vanderwater D. A., Park K. G., Kuo C.
P., Osentowski T. D., Peanasky M. J., Yu J. G., Fletcher R. M., Steigerwald D. A., Grafford M. G., Robbins V. M. 1994. Very high-efficiency semiconductor wafer-bonded
transparent-substrate (AlxGa1-x)0.5In0.5P/GaP lightemitting diodes, Appl. Phys. Lett. 64, 2839
Liu Z. G., Bai Y. J., Cui D. L., Hao X. P., Wang L. M., Wang Q. L., Xu X. G. 2002. Increase of lattice constant in GaP nanocrystals, J. Cryst. Growth 242, 486
Matsumoto N., Kumabe K. 1979. Effect of hydrogen incorporation during deposition by sputtering for amorphous Gallium Phosphide films, Japanese Journal of Applied Physics 18(5), 1011
Nelson D. F., Turner E. H. 1968. Electro-optic and Piezoelectric Coefficients and Refractive index of Gallium Phosphide, J. Appl. Phys. 39, 3337
Panish H. B. and Casey H. C. 1969. Temperature Dependence of the Energy Gap in GaAs and GaP,J. Appl. Phys. 40 (1), 163
Pankove J. I. 1971. Optical Processes in Semiconductors, Prentice-Hall, New Jersey, 88
Schubert E. F. 2004. Refractive index and extinction coefficient of materials. http://homepages.rpi.edu/~schubert/Educational-resources/Materials-Refractive-index-and-extinction-coefficient.pdf
Sharma, P., Katyal S. C. 2007. Determination of optical parameters of a-(As2Se3)90Ge10 thin film. J. Phys D: Appl Phys 40. 2115
Sturge M. D. 1962. Optical absorption of gallium arsenide between 0.6 and 2.75eV. Phys Rev 127, 768
Swanepoel R.1983. Determination of the thickness and optical constants of amorphous silicon. J Phys E: Sci Instrum 16. 1214
Treideris M., Simkiene I., Kasalynas I., Selskis A., Babonas G. J. 2011. Infrared Refletance of GaP Nanorods, Lithuanian Journal of Physics. 51 (4), 341
Yu P. Y., Cardona M. 1996 Fundamentals of Semiconductors. Springer-Verlag, Berlin, Germany.
Zhang Q., Zhang Z., Zhou Z. 2008. Probe into the reflection from GaP nanoparticles via different solutions of radiative transfer equation, Appl. Phys. B 93, 589
Zhang Q, Wei W., Puan F. 2011, Ellipsometric analysis and optical absorption characterization of Gallium Phosphide nanoparticulate thin film, Chin. Phys. B 20 (4), 049802