EFFLUX MEDIATED MULTIDRUG RESISTANT PSEUDOMONAS AERUGINOSA ISOLATED FROM DIFFERENT ENVIRONMENTAL SOURCES

Authors

  • G. C. AGU Department of Microbiology, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
  • B. T. THOMAS Department of Microbiology, Olabisi Onabanjo University, Ago-Iwoye, Nigeria
  • O. O. SALAMI Science Laboratory Technology Department (Microbiology Unit), Federal College of Animal Health and Production Technology, Moor Plantation, Apata Ibadan, Nigeria
  • O. D. POPOOLA Department of Microbiology, Olabisi Onabanjo University, Ago-Iwoye, Nigeria

DOI:

https://doi.org/10.51406/jnset.v17i1.1903

Keywords:

Multi-Drug Resistance, Efflux pump Inhibitor, CCCP, Pseudomonas aeruginosa, Environmental sources

Abstract

Pseudomonas aeruginosa is an important opportunistic pathogen and one of the leading causes of multi-drug resistant nosocomial infections. This study was therefore carried out to determine the resistance nature, and the role of efflux pump in multidrug resistance of Pseudomonas aeruginosa isolated from different environmental sources using the efflux pump inhibitor, Carbonyl Cyanide 3-Chlorophenylhydrazone (CCCP). A total of 220 environmental samples were collected and processed following standard techniques. Susceptibility to antibiotics was performed using disc diffusion methods as described by the Clinical and Laboratory Standards Institute. Activity of the efflux pump system was carried out using the efflux pump inhibitor, CCCP. Results obtained identified 100 (45.5%) Pseudomonas aeruginosa and 72 (32.7%) other strains of Pseudomonas spp. The susceptibility testing revealed that all the identified strains of Pseudomonas aeruginosa that were subjected to susceptibility test were significantly resistant to ampicillin and cefotaxime, But the  resistance profile of isolates to tetracycline, chloramphenicol, ceftriaxone, cefuroxime and perfloxacin were 93%, 72.1%, 79.1%, 58.1% and 51.2% respectively. However, imipenem was the most sensitive (100%), followed by cefepime (65%) and gentamicin (44%). Carbonyl Cyanide 3-Chlorophenylhydrazone decreased the minimum inhibitory concentration (MIC) of the isolates by 2 folds. Results obtained have shown the ubiquitous presence of multi-drug resistant P. aeruginosa from the environmental samples examined. Furthermore, it indicated the role of efflux pump in antibiotics resistance in P. aeruginosa isolates which indicate that P. aeruginosa strains from environmental sources could resist antibiotics by the efflux mechanism.  

 

 

References

Afiukwa, F. N, I. R., Iroha, C. A., Afiukwa, T. E., Ayogu, A. E., Oji., N. C. Onwa 2011, Presence of coliform producing extended spectrum beta lactamase in sachet-water manufactured and sold in Abakaliki, Ebonyi State, Nigeria”. Int. Res. J. Microb. 1(2):32-36.

Ardebili, A., Talebi, M. Azimi, L. Rastegar, Lari, A. 2014. Effect of Efflux pump Inhibitor carbonyl cyanide 3-chlorophenyl hydrazone on the Minimum inhibitory concebtration of ciprofloxacin in Acinetobacter baumannii clinical Isolates, Jundishapur Journal of Microbiological, 7(1): 86-91

Blais, J, D. Cho, K., Tangen, C., Ford, A., Lee, O., Lomovskaya., Chamberland, S. 1999. Efflux Pump Inhibitor enhances the activity of antimicrobial agents against a broad selection of Bacteria, 39th Inter science Conference for Antimicrobial Agents and Chemotherapy. San Francisco.

Brenwald, N. M., Gill, T. Davies and P. Appelbaum 2000. Efflux-mediated resistance in mutants of Streptococcus pneumonia selected with newer Fluoroquinolones 40th Inter science Conference for Antimicrobial Agent and Chemotherapy, Toronto.

Brown, P.D., Izundu, A. 2004. Antibiotic resistance in clinical isolates of Pseudomonas
aeruginosa in Jamaica Pan American J. Public Health, 16(2):12513.

Clinical and Laboratory Standards Institute 2015. Performance Standards for Antimicrobial Susceptibility Testing, Twenty- Fifth Informational Supplement Pennsylvania, USA: CLS1, http://cIsi.org/

Coats, L. M. 1998. An Outbreak of Pseudomonas aeruginosa; New Zealand Veterinary J., 46(1):39-39.

Colombini, S. R, B., Merchant and Hosgood, G. 2000, “Microbial flora and antimicrobial susceptibility patterns from dogs with otitis media Veterinary Dermatology, 11:235-239.

David, K. 2005, Complete genome sequence of Pseudomonas aeruginosa, an opportunities pathogen. Nature, 406:959-64.

Dubois, V. Arpin, C., Melon, M. et al., 2001. Nosocomial outbreak due to amult-resistance strain of Pseudomonas aeruginosa isolates. Journal of Clinical Microbiology, 40: 4285-4288

Eyo, A-A.O.; Ibeneme, E. O.; Thumamo, B.D. P., Asuquo, A. E. 2015. Antibiotics resistance profiles of clinical and environmental isolates of Pseudomonas aeruginosa in Calabar, Nigeria. Journal of Pharmacy and Biology Sciences 10: (4)09- 19.

Gehen, M. H., Yousef, V. I., T. M. 2011. Sarakbi Study on Pseudomonas aeruginosa in chickens, Vet. Med. J. of Cairo University. 29, 35-143.

Igbalajobi, O. A.; Oluyega, A. O.; Oladeji, A.C., Babalola, J. A. 2016. Antibiotic resistance pattern
of Pseudomonas aeruginosa Isolated from Clinical Samples in Ekiti State University Teaching Hospital Ado-Ekiti State of Nigeria; British Microbiology Research Journal; 12: 4;1-6.

Jefferies, J. M.; Cooper, C.; Yam,T., and Clark, S. C. (2012). Pseudomonas aeruginosa outbreak in the neonatal intensive care unit. A systematic review of risk factors and environmental sources, Journal of Medical Microbiology; 61(8): 1052-1061

Kieboom, J. J., Sokol, P. A. and Dennis, T. (2000). Electro transformation of Pseudomonas. Methods Mol. Biol. 47-125-133.

Kohler, T., Michea-Hamzephpour, M., Henze, U., Gotoh, N., , Curty, L. K. and. Pechere, J. C. (1997).

Characterization of MexE-MexF-OprN, a positively regulated multi-drug efflux system of Pseudomonas aeruginosa, Mol. Microbiol. 23:345-54.

Kohler, T., Michea-Hamzephpour, M., Plesiat, P., Kahr, A. L. and Pechere, J. C. (1999b). Differential selection of multi-drug efflux systems by quinolones in Pseudomonas aeruginosa, Antimicrobial Agents Chemotherapy, 41:2540-2543.

Kohler, G., Lasai, Y. and Franscisco, L. (1999c). Mechanisms of beta-lactam resistance amongst Pseudomonas aeruginosa isolated in an Italian survey, J. Antimicrobial Chemotherapy, 42:697-702.

Kohler, T., Delden, C.V., Curty, L.K., Hamrehpour, M. M., Henze, U. and. Pechere, J. C. (2001).

Over expression of the MexEF-OprN multi-drug efflux system affects cell-to- cell signaling in Pseudomonas aeruginosa. Journal of Bacteriology, 183: 5213-5222.

Lambert, P. A. (2002). Mechanisms of antibiotics resistance in Pseudomonas aeruginosa, Journal of the Royal Society of Medicine, 41(95): 22-26

Lawrence, L. E. and Barrett, J. F. (1998). Efflux pumps in bacteria: overview, clinical relevance, and potential pharmaceutical target, Exp. Opin. Invest. Drugs 7:199-217.

Li, X. Z., Ma, D. Livermore, D. M. and Nikaido, H. (1994). Role of efflux pumps in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to beta-lactam resistance, Antimicrobial Agent chemotherapy. 38:1742-1752.

Li, M. E., Mosquedo, G. and Sambrook, J. (2003). A set of gene encoding a second toluene efflux system in Pseudomonas aeruginosa. J. Bacterial. 182:937-43.

Lin, L. Ling, B. D., Li, X. Z. 2009. Distribution of the multidrug efflux pump genes, adeABC, ade DE and adeUK, and class 1 integron genes in Multiple- antimicrobial resistant clinical isolates of Acinetobacter baumanni. Acinetobacter calcoaceticus complex, International Journal of Antimicrobial Agents 33(1): 27-32

Livemore, .D. 2005. Antibiotic activity of Pseudomonas aeruginosa, J. Bacterial. 54:24-5.

Livermore, D. M. 2001. Of Pseudomonas porins, pumps and carbapeanens. Journal of Antimicrobial Chemotherapy, 47: 247-250.

Nikaido, H. 1996. Multi drug efflux pumps of gram negative bacteria, J. Bacteriol. 178:5853-5859, 1996.
Nikaido, H. 1998, “Prevention of drug access to bacterial targets: permeability barriers and active Efflux, Science 264:382-388.

Olayinka, A .T., Olayinka, B. O., Onile, B. A. 2009. Antibiotic susceptibility a plasmid pattern of Pseudomonas aeruginosa from the surgical unit of University Teaching Hospital in north central Nigeria, International J. Medical Sci. 1(3):079-83.

Olga, F., Watkins, B. V. 2001. A CTX-M extended spectrum beta-lactam in Pseudomonasaeruginosa from a patient and Stenotrophomonas maltophila, J. Med Microbiol. 57:1607-8.

Organization for Economic Cooperation and Development (O.E.C.D.) Guidelines (2011)Poirel, L. Weldhagen, G. F.; Naas, T., De Champs C.; Dove, M. G. and Nordmann, P. (2001). GES-2, a class A beta-lactamase from Pseudomonas aeruginosa with increased hydrolysis of imipenem. Antimicrobial Agents and Chemotherapy 45:2598-2603

Pumbwe, L., Glass, D. Wexler, H. M. 2006. Efflux pump overexpression in multiple antibiotic resistance mutants of Bacterioides fragile, Antimicrobial Agents Chemotherapy 509: 31-50

Radostis, T. Mima, Y. S, I. J. Piddock and M. K. Murakami 2004. “Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms.
J. Mol.Microbiology Biotechnol. 2001(3):255-63.

Rajamohan, G., Srinivan, V. B., Gebreyes, W. A. 2010. Novel role Acinetobacter baumanni RND efflux transporter in mediating decreased susceptibility to biocides. Journal Antimicrobial chemotherapy; 65 (2): 228-232

Walaa, M., Samah, G., Hatem, M., Nikhat M. (2018). Inviro antibiotic resistance patterns of Pseudomonas spp isolated from Clinical samples of ahospital in Madinah, Sadi Arabia, African Journal of Microbiology Research ; 12 (1): 19-26

Weiner, L. M., Webb, A. K., Limbago, B. et al. 2016. Antimicrobial resistant pathogens associated with health care-associated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2011-2014. Infectious Control Amp Hospital Epidemiology, 37(11): 1288-1301

Yetkin, G., Otlu, B., Cicek, C., Kuzucu, B., Durmaz, R. 2007. Clinical, Microbiologic and Epidermiologic characteristics of P. aeruginosa, infections in a university hospital, Malatya, Turkey”. American J. Infectious Control, 34(4):188-192.

Downloads

Published

2019-11-06

Issue

Section

Articles