BEHAVIOURAL IMPLICATIONS OF EXPOSURE TO ULTRAVIOLET AND INFRARED LIGHTS ON WISTAR ALBINO RAT
Keywords:
Behaviour, Ultraviolet light, Infrared light, Wistar albino ratAbstract
The crucial role played by different light wavelengths can evoke different behavioural responses in animals, especially when introduced at night. This study investigated the effects of exposure to near Ultraviolet (UV) and near Infrared (IR) lights on exploratory, memory and antidepressant behaviour of male Wistar albino rat (Rattus norvegicus). Thirty weaned male rats (30.02±5.82 g) were exposed to daylight (6 AM to 6 PM) and 6 hours of artificial lights of varying wavelengths (UVA-365 nm, UVA-396 nm, IRA-850 nm and IRA-940 nm) at night for 90 days. The control groups were exposed to darkness (DRK) and ambient light (AML), respectively. Light treatments and control were replicated five times. Behavioural outcomes were measured using the Open Field Test (OFT), Forced Swim Test (FST) and Novel Object Recognition Test (NOR). The highest immobility time in FST was highest in DRK (110.00±6.33 s) while UVA 365 nm had the lowest immobility time (41.60±23.72 s). In the OFT, rats exposed to ultraviolet A (365 nm) light showed significantly (p < 0.05) higher exploratory and non-depressive behaviour: centre square duration (44.40±10.46 s), grooming duration (110.80±28.05 s), rearing duration (103.40±38.56 s). Rats exposed to UVA (396 nm) had the highest discrimination index for the novel object (0.03) in NOR test. In conclusion, exposure of male Wistar rats to ultraviolet and infrared lights of varying wavelengths had significant impact on the depressive, memory and exploratory behaviour.
References
Ashkenazy, T., Einat, H., and Kronfeld-Schor, N. 2009. Effects of bright light treatment on depression-and anxiety-like behaviors of diurnal rodents maintained on a short daylight schedule. Behavioural brain research, 201(2), 343-346.
Bajer, K., Molnár, O., Török, J., and Herczeg, G. 2011. Ultraviolet nuptial colour determines fight success in male European green lizards (Lacerta viridis). Biology letters, 7(6), 866-868.
Cajochen, C., Zeitzer, J. M., Czeisler, C. A., and Dijk, D.-J. 2000. Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behavioural brain research, 115(1), 75-83.
Crawley, J. N. 1985. Exploratory behavior models of anxiety in mice. Neuroscience & Biobehavioral Reviews, 9(1), 37-44.
Cryan, J. F., Markou, A., and Lucki, I. 2002. Assessing antidepressant activity in rodents: recent developments and future needs. Trends in pharmacological sciences, 23(5), 238-245.
Dedeke, G., Kehinde, F., Olatinwo, O., Johnson, O., and Adewale, A. 2017. Exposure of albino rats (Rattus norvegicus) to lights of varying wavelengths; effect on haematological profile, plasma electrolytes and weight gain. Zoologist (The), 15, 29-34.
Dedeke, G., Olatunde, F., Olude, M., Aladesida, A., and Kehinde, F. 2021. Chronic Exposure to Artificial Light Spectra at night alter Neurobehaviour and Neurotransmitter levels in Albino Rats. J Environ Pollut Control, 4(1), 106.
Estanislau, C. 2012. Cues to the usefulness of grooming behavior in the evaluation of anxiety in the elevated plus-maze. Psychology & Neuroscience, 5, 105-112.
Faborode, O. S., Yusuf, I. O., Okpe, P. O., Okudaje, A. O., and Onasanwo, S. A. 2022. Exposure to prolonged unpredictable light impairs spatial memory via induction of oxidative stress and tumor necrosis factor-alpha in rats. Journal of Basic and Clinical Physiology and Pharmacology, 33(3), 355-362.
Fonken, L. K., Finy, M. S., Walton, J. C., Weil, Z. M., Workman, J. L., Ross, J., and Nelson, R. J. 2009. Influence of light at night on murine anxiety-and depressive-like responses. Behavioural brain research, 205(2), 349-354.
Gaston, K., Visser, M., and Hölker, F. 2015. The biological impacts of artificial light at night: The research challenge. Philosophical Transactions of The Royal Society B Biological Sciences, 370, 20140133. doi: 10.1098/rstb.2014.0133
Gonzalez, M., and Aston-Jones, G. 2008. Light deprivation damages monoamine neurons and produces a depressive behavioral phenotype in rats. Proceedings of the National Academy of Sciences, 105(12), 4898-4903.
Gould, T. D., Dao, D. T., and Kovacsics, C. E. 2009. The open field test. Mood and anxiety related phenotypes in mice: Characterization using behavioral tests, 1-20.
Hattar, S., Liao, H.-W., Takao, M., Berson, D. M., and Yau, K.-W. 2002. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science, 295(5557), 1065-1070.
James, C., Asher, L., Herborn, K., and Wiseman, J. 2018. The effect of supplementary ultraviolet wavelengths on broiler chicken welfare indicators. Applied Animal Behaviour Science, 209, 55-64. doi: https://doi.org/10.1016/j.applanim.2018.10.002
Kehinde, F., Dedeke, G., Olude, M., Ademolu, K., Aladesida, A., Adewale, A., and Owagboriaye, F. 2023. Assessment of reproductive hormones in prepubertal and postpubertal rats (Rattus norvegicus) on chronic exposure to various spectra of artificial light at night. Zoologist (The), 22(1), 29-37.
LeGates, T. A., Altimus, C. M., Wang, H., Lee, H.-K., Yang, S., Zhao, H., Kirkwood, A., Weber, E. T., and Hattar, S. 2012. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature, 491(7425), 594-598.
Longcore, T., and Rich, C. 2004. Ecological light pollution. Frontiers in Ecology and the Environment, 2(4), 191-198.
Lueptow, L. M. 2017. Novel object recognition test for the investigation of learning and memory in mice. JoVE (Journal of Visualized Experiments)(126), e55718.
Negelspach, D. C., Kaladchibachi, S., and Fernandez, F. 2018. The circadian activity rhythm is reset by nanowatt pulses of ultraviolet light. Proceedings of the Royal Society B, 285(1884), 20181288.
Novales Flamarique, I. 2013. Opsin switch reveals function of the ultraviolet cone in fish foraging. Proceedings of the Royal Society B: Biological Sciences, 280(1752), 20122490.
Perrin, F., Peigneux, P., Fuchs, S., Verhaeghe, S., Laureys, S., Middleton, B., Degueldre, C., Del Fiore, G., Vandewalle, G., and Balteau, E. 2004. Nonvisual responses to light exposure in the human brain during the circadian night. Current Biology, 14(20), 1842-1846.
Phipps-Nelson, J., Redman, J. R., Dijk, D.-J., and Rajaratnam, S. M. 2003. Daytime exposure to bright light, as compared to dim light, decreases sleepiness and improves psychomotor vigilance performance. Sleep, 26(6), 695-700.
Pickard, G. E., and Sollars, P. J. 2012. Intrinsically photosensitive retinal ganglion cells. Reviews of Physiology, Biochemistry and Pharmacology, 162, 59-90.
Porsolt, R. D., Brossard, G., Hautbois, C., and Roux, S. 2001. Rodent models of depression: forced swimming and tail suspension behavioral despair tests in rats and mice. Current protocols in neuroscience, 14(1), 8.10 A. 11-18.10 A. 10.
Rea, M. S., Figueiro, M. G., Bierman, A., and Bullough, J. D. 2010. Circadian light. Journal of circadian rhythms, 8(1), 1-10.
Saladin, K. S., McFarland, R., Gan, C. A., and Cushman, H. N. 2014. Essentials of anatomy & physiology: McGraw-Hill Education.
Schultheiss, P., Wystrach, A., Schwarz, S., Tack, A., Delor, J., Nooten, S. S., Bibost, A.-L., Freas, C. A., and Cheng, K. 2016. Crucial role of ultraviolet light for desert ants in determining direction from the terrestrial panorama. Animal Behaviour, 115, 19-28.
Secondi, J., Lepetz, V., and Théry, M. 2012. Male attractiveness is influenced by UV wavelengths in a newt species but not in its close relative. PLoS One, 7(1), e30391.
Shcherbakov, D., Knörzer, A., Hilbig, R., Haas, U., and Blum, M. 2012. Near-infrared orientation of Mozambique tilapia Oreochromis mossambicus. Zoology, 115(4), 233-238.
Sivamani, R. K., Crane, L. A., and Dellavalle, R. P. 2009. The benefits and risks of ultraviolet tanning and its alternatives: the role of prudent sun exposure. Dermatologic clinics, 27(2), 149-154.
Smith, E. L., Greenwood, V. J., and Bennett, A. T. 2002. Ultraviolet colour perception in European starlings and Japanese quail. Journal of Experimental Biology, 205(21), 3299-3306.
Tyler, N., Jeffery, G., Hogg, C., Stokkan, K.-A., and Giguère, N. 2014. Ultraviolet vision may enhance the ability of reindeer to discriminate plants in snow. Arctic, 159-166.
USEPA. 2023. United States Environmental Protection Agency - Terminology and Acronyms Report.
Vandewalle, G., Balteau, E., Phillips, C., Degueldre, C., Moreau, V., Sterpenich, V., Albouy, G., Darsaud, A., Desseilles, M., and Dang-Vu, T. T. 2006. Daytime light exposure dynamically enhances brain responses. Current Biology, 16(16), 1616-1621.
Voiculescu, S. E., Le Duc, D., Roșca, A. E., Zeca, V., Chiţimuș, D. M., Arsene, A. L., Drăgoi, C. M., Nicolae, A. C., Zăgrean, L., and Schöneberg, T. 2016. Behavioral and molecular effects of prenatal continuous light exposure in the adult rat. Brain research, 1650, 51-59.
Vollert, C., Zagaar, M., Hovatta, I., Taneja, M., Vu, A., Dao, A., Levine, A., Alkadhi, K., and Salim, S. 2011. Exercise prevents sleep deprivation-associated anxiety-like behavior in rats: potential role of oxidative stress mechanisms. Behavioural brain research, 224(2), 233-240.
Walsh, R. N., and Cummins, R. A. 1976. The open-field test: a critical review. Psychological bulletin, 83(3), 482.
Yankelevitch-Yahav, R., Franko, M., Huly, A., and Doron, R. 2015. The forced swim test as a model of depressive-like behavior. JoVE (Journal of Visualized Experiments)(97), e52587.