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Definition 1.1 
Given a vector x in a Hilbert space H and a 
subspace M in H.  We wish to find the vec-
tor m  closest to x in the sense that it maxi-
mizes ║x- m║ is called a minimum norm 
problem. If M is a closed subspace of Hil-
bert space, there is always a unique solution 
to the minimum problem and the solution 
satisfies orthogonality condition. 
 
Furthermore, we introduced the following 
two theorems, which centre on the equiva-
lence of two extremisation problems: one 
formular in a normed space X and the other 
in its dual x’.  We remark here that the mini-
mum norm problems have been found use-
ful extensively in approximation theory, Esti-
mation theory, etc. 
 
Theorem 1.2  
According to (Luenberger 1969) let x be an 
element in a real normed linear space X.  Let 
d denote its distance from the subspace M.   
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INTRODUCTION 
The essence of optimization abstraction 
(Bamigbola et al., 2005) is for ease of char-
acterizing the solution of optimization 
problems.  The modern theory of optimiza-
tion in normed linear space is largely cen-
tered about the interrelations between a 
space and its corresponding dual.  Duality 
plays a role analogous to the inner product 
in Hilbert space.  The main duality principle 
is that the primal problem has an optimal 
solution if and if the dual problem has an 
optimal solution.  Let us consider the exten-
sion theorem extending projection solution 
of minimum norm problems to arbitrary 
normed spaces. 
 
Theorem 1.1  
According to (Madox, 1988) let x be a real 
linear normed space and p a continuous sub 
linear functional on X.  let f be a linear 
functional defined on a subspace M of X 
satisfying f  (m)≤ p(m) for all m € M.  Then 
there is an extension F of f on M such that 
F (x)≤ p (x) on X. 
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where the minimum on the left is achieved for M|0 € M1   .  If  the supremum on the right is 
achieved for some xo € M  , then x1- m10   said to be aligned with x0  - m0 . 
 
Corollary 1.1 
According to Luenberger (1969) let x be an element of a real normed linear space X and let 

M be a subspace of X.  A vector satisfies for all if and 

only if there is a non-zero aligned with . 
 
Theorem 1.3  
According to Luenberger (1969) let M be a subspace in a real normed space X. Let

be a distance d from . Then: 
 

    
 

where, the minimum on the left is achieved for . If the supremum on the right 

is achieved for some , then is said to be aligned with . 
 

The Dual of  CP [a,b] 
Given the interval [a,b] and 1 ≤ p < ∞is the collection of all real valued function that are p-
times continuously differentiable on [a,b]. clearly  CP [a,b] is a vector space.  We show that 
for each x  € CP [a,b],  the following 
 
                                                                                                       p 
║x║=max⌡x (t)⌡+ max ⌡x1 (t) ⌡+ . . . +  max⌡x (p) (t)⌡= ∑ max⌡x (k) (t) ⌡ 
            t€J                 t€J                              t€J                         K=0 
 
 
                 where: J = [a,b] defines as norm 
 
║αx║ = max⌡αx (t) ⌡+ mαx ⌡αx1 (t)  ⌡+ . . . +  max⌡αx (p) (t)  ⌡= ⌡α ⌡{ max⌡x(t)  ⌡+ max ⌡x1 

(t)  ⌡+ . . . +  max⌡x (p) (t) ⌡} 
 = ⌡α ⌡║x║ 
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Then: 
d = inf ║ x- m║ = mac‹ x,x’› 
        x’≤1 
           m € M. 
           x’€ M1 
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If, x, y  € CP  then for any k = 0,1 . . .,p 
⌡x(k) (t) + y(k)  (t)  ⌡≤ ⌡⌡x(k) (t) + y(k)  (t)  ⌡≤ ⌡ max(k)  (t⌡+ max⌡ y(k(t)  ⌡ 
 
and also 
 max ⌡ x(k) (t)  + y(k)  (t)  ⌡≤ ⌡ max(k)  (t⌡+ max⌡ y(k(t)  ⌡ 
 
                                             p 
consequently ║x + y║ =   ∑   max ⌡ x(k) (t)  + y(k)  (t)  ⌡                                       
                                           K=0 
 
                                            P                                p 
                       ≤ ∑   max ⌡ x(k) (t)  ⌡ + ∑   y(k)  (t)  ⌡= ║x║ + ║y║ 
                        K=0                           K=0 
                                                                                     
                                 [ Here, x(o)  (t)  =  x (t)  ]. 
                      Hence, CP [a,b] is a normed space. 
 
 
We next establish the Riesz representation theorem for elements f of the dual of the real 

linear space . We define a functional f on  by: 
 

 
 
Definitely, f is linear and bounded with norm 

      

 

      =  

taking the supremum over all x of norm 1, we obtain  

To get , we choose  
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Theorem 2.1 (Modified Reisz Representation Theorem) 

Let f be a bounded functional on . Then, there is a function g of bounded 

variation on such that for all , 
 

 

and such that the norm of f is the total variation of g on  defines a bounded linear 
function on X in this way. 
 
Proof 

Let B be the space of bounded variation on  with the norm of an element de-
fined as  

     

The space  can be considered as a subspace of B. Thus, if f is a bounded linear 

functional on , there is, by Hahn-Banach theorem, a linear functional F on B 

which is now an extension of f and has the same norm. For any , we define the 

function  by and 
 

=  
 

for  Clearly, each  

Define  and show that g is of bounded variation on . For this pur-

pose, let be a finite partition of . Denoting  
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 baCX p ,

 ba, Xx

             
b

a

p tdgtxtxtxxf 

 ba,

 ba, Bx

 txx
Jt

B


 sup

 baC p ,

 baCX p ,

 baq ,

qu ,0au

 tu q 






.0
;1

btqif
qtaif

bqa  .Bu q 

   quFqg   ba,

,210 btttta n    ba,

    ,sgn 1 iii tgtg

          





 
n

i
iii

n

i
ii tgtgtgtg

1
1

1
1 

1O.M. BAMIGBOLA AND 2I.A OSINUGA 

J. Nat. Sci. Engr. Tech. 2009, 8(1):16-24 19 



 

    
 

 
and 
 

    
 
and 

    
 
Hence, g is of bounded variation with 
 

    
 
Next, we derive a representation for f on X. Let 
 

    
 

where  is again a finite partition of and . Then, 
 

   
 

which goes to zero as the partition are made arbitrarily fine (since is uniformly 
continuous). Using the continuity of F, 
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but, 

   
 
and by the definition of Steiltjes integral, 
 

     
 

    
 
Now, it is a standard property of the Steiltjes integral that 
 

    
 
 

for each ,  
hence, 

    
on the other hand, 
 

    
 
using Reisz representation and consequently, 

 

 
 

It should be noted that the function g in Theorem 2.1 is not unique. To remove the ambi-

guity, we introduce a subspace of called the normalized space of functions of 

bounded variation denoted by consisting of functions which vanish at the point 

and are continuous from the right on  in . 
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Characterizing Optimum Solution 
In this section, we consider the use of the 
above results.  Three steps can be identified 
in connection with the minimum norm 
problem: 
 
1. The use of alignment property of the 

space to characterize the optimum solu-
tion 

2. The existence of solution guaranteed by 
formulating the norm problem in a dual 
space. 

3. Checking to see if the dual problem is 
easier to solve than the primal. 

 
Many problems amendable to the theory of 
Section 1 are mostly naturally formulated as 
finding the vector of a minimum norm in a 
linear variety rather than finding the best 
approximation on a subspace.  A standard 
problem to this kind arising in several con      
texts is to find an element of minimum 
norm satisfying a finite number of linear 
constraints.  To guarantee existence of solu-
tion, let us consider  x’ € x’ and express the 
constraints in the form: 
 
  Y1, x’ =  c1 
  Y2, x’ =  c1 
  …………. 
  …………. 
  ………… 
  Yn, x’ =  cn y1  € x’ 
 
 If    x ’  is any vector satisfying the con-
straints, we have  

 
 
where: M denotes the space generated 

by the . But from Theorem 1.3. 
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any vector in M is of the form  
 

, since M is finite dimen-
sional 
 

 
 
 
Alignment Property 
 
Definition 4.1 

A vector is said to be aligned with 

a vector if 
 

    

where: denote the dual of X. We remark 
that the alignment is a relationship between 
two vectors spaces. 
 
Corollary 4.1 

Let  is consistent; and 
suppose the system of linear equations 
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Then, 
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the optimal x. 
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Proof  
Let 

 be 
non empty. 
 

Suppose  Then, 

 Since  
 
However, 
  

  
Thus, 

    

and is aligned with x. 
 
Existence and Uniqueness of Solution 
Theorem 1.3 guarantees the existence of a 
solution to the minimum norm problem if 
the problem is appropriately formulated in 
the dual of a normed space.  This is also 
reflected in Hahn Banach theorem which 
establishes the existence of certain linear 
functionals. 
 
The optimal vector, if it exists, may not 
unique as the situation is likely to be more 
complex in arbitrary normed spaces since 
the equation for optional vector will gener-
ally be non-linear.  Nevertheless, the key 
concept that quarantees uniqueness is the 
orthogonality condition and the principal 
result is analogous to the projection theo-
rem. 
 
Selection of the Relevant Problem 
The transition from one problem to its dual 
results in significant simplification as it con-
vert some complex infinite-dimensional 

 nicxyXxK i ,...,2,1,: , 
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xxxx ,

x

problems to an easily handled finite dimen-
sional problems (Ferreira, 1996).  Even in 
the finite dimensional problems, the higher 
the dimensions, the higher the complexity. 
 

    CONCLUSION 
Optimization involving extremisation prob-
lem over Hilber space is herein considered 
with the use of extension theorem and align-
ment property.  The optimal solution is char-
acterized by the space CP [a,b], 1 ≤ p ≤∞. 
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